Riassunto delle caratteristiche del prodotto - OSSIGENO SIAD
2 composizione qualitativa e quantitativa
Principio attivo: Ossigeno 100%
3 forma farmaceutica
Gas medicinale compresso
Gas medicinale criogenico
4 informazioni cliniche
4.1 indicazioni terapeutiche
Trattamento dell’insufficienza respiratoria acuta e cronica.
Trattamento in anestesia, in terapia intensiva, in camera iperbarica.
4.2 posologia e modo di somministrazione
L’ossigeno (compresso o criogenico) viene somministrato attraverso l’aria inalata, preferibilmente ricorrendo ad apparecchi dedicati (quali, per esempio, una cannula nasale o una maschera facciale); il dosaggio al paziente viene effettuato indipendentemente dalla confezione del gas medicinale tramite apparecchi dosatori (flussometri).
Con questi sistemi, l’ossigeno viene somministrato attraverso l’aria inspirata, mentre il gas espirato e l’eventuale eccesso di ossigeno lasciano il circuito inspiratorio del paziente mescolandosi con l’aria circostante (sistema aperto o anti-rebreathing ).
In anestesia è spesso utilizzato un sistema particolare che permette di inspirare nuovamente il gas precedentemente espirato dal paziente (sistema chiuso o rebreathing ).
L’ossigeno può anche essere somministrato direttamente nel sangue attraverso un ossigenatore, con un sistema di by-pass cardiopolmonare in cardiochirurgia ed in altri casi in cui è richiesta la circolazione extracorporea.
Esistono numerosi dispositivi destinati alla somministrazione dell’ossigeno, e si distinguono in:
Sistemi a basso flussoE’ il sistema più semplice per la somministrazione di una miscela di ossigeno nell’aria inspirata, un esempio è il sistema in cui l’ossigeno è somministrato tramite un flussometro collegato ad una cannula nasale o maschera facciale.
Sistemi ad alto flussoSistemi progettati per fornire al paziente una miscela di gas garantendone il fabbisogno respiratorio totale. Questi sistemi sono progettati per rilasciare concentrazioni stabilite e costanti di ossigeno che non vengono influenzate/diluite dall’aria circostante, un esempio sono le maschere di Venturi dove, stabilito il flusso di ossigeno, l’aria inspirata dal paziente viene arricchita di quella concentrazione costante di ossigeno.
Sistemi con valvola a richiestaSistemi progettati per erogare ossigeno al 100% senza entrare in contatto con l’aria ambiente. È destinato per breve tempo, solo per necessità.
Ossigenoterapia iperbaricaL’ossigenoterapia iperbarica viene effettuata in una speciale camera pressurizzata progettata appositamente in cui si può mantenere una pressione 3 volte superiore a quella atmosferica. L’ossigenoterapia iperbarica può anche essere somministrata attraverso una maschera a perfetta tenuta, un casco o un tubo endotracheale.
Documento reso disponibile da AIFA il 03/05/2019
Ossigenoterapia normobarica
Per ossigeno terapia normobarica si intende la somministrazione di una miscela gassosa più ricca in ossigeno di quella dell’aria atmosferica, contenente cioè una percentuale in ossigeno nell’aria ispirata (FiO2) superiore al 21%, ad una pressione parziale compresa tra 0,21 e 1 atmosfera (0,213 e 1,013 bar).
Ai pazienti non affetti da insufficienza respiratoria, l’ossigeno può essere somministrato con ventilazione spontanea mediante cannule nasali, sonde nasofaringee o maschere idonee.
Ai pazienti con insufficienza respiratoria o anestetizzati, l’ossigeno deve essere somministrato in ventilazione assistita.
Le bombole di ossigeno hanno all’interno una pressione massima di circa 150–200 bar. La pressione viene regolata da un riduttore ed è rilevabile sul manometro. Moltiplicando la cifra indicata dal manometro per il contenuto in litri della bombola si ottiene la quantità di ossigeno ancora disponibile nella bombola.
(Esempio: Calcolo approssimato del contenuto: una bombola ha un contenuto di 10 litri e il manometro segna 200 bar ne risulta un contenuto di 2000 litri di ossigeno. Con un consumo di 2 litri al minuto la bombola sarà vuota dopo 16 ore circa).
Con ventilazione spontanea
Pazienti con insufficienza respiratoria cronica: somministrare ossigeno ad un flusso tra 0,5 e 2 litri/minuto, adattabile in base alla gasometria.
Pazienti con insufficienza respiratoria acuta: somministrare ossigeno ad un flusso tra 0,5 e 15 litri/minuto, adattabile in base alla gasometria.
Con ventilazione assistita
Il valore minimo di FiO2 è il 21%, e può salire fino al 100%.
Lo scopo terapeutico dell’ossigenoterapia è quello di assicurare che la pressione parziale arteriosa dell’ossigeno (PaO2) non sia inferiore a 8 kPa (60 mmHg) o che l’emoglobina saturata di ossigeno nel sangue arterioso non sia inferiore al 90% mediante la regolazione della frazione di ossigeno inspirato (FiO2).
La dose deve essere adattata in base alle esigenze individuali del singolo paziente.
La raccomandazione generale è quella di utilizzare il valore minimo di FiO2 necessario per raggiungere l’effetto terapeutico desiderato, ovvero valori di PaO2 entro la norma. In condizioni di grave ipossemia, possono essere indicati anche valori di FiO2 che comportano un potenziale rischio di intossicazione da ossigeno.
E’ necessario un monitoraggio continuo della terapia ed una valutazione costante dell’effetto terapeutico, attraverso la misurazione dei livelli della PaO2 o in alternativa, della saturazione di ossigeno arterioso (SpO2).
Nell’ossigenoterapia a breve termine, la frazione di ossigeno inspirato (FiO2) deve essere tale da mantenere un livello di PaO2 > 8 kPa con o senza pressione di fine espirazione positiva (PEEP) o pressione positiva continua (CPAP), evitando possibilmente valori di FiO2> 0,6 ovvero del 60% di ossigeno nella miscela di gas inalato.
L’ossigenoterapia a breve termine deve essere monitorata con ripetute misurazioni del gas nel sangue arterioso (PaO2) o mediante ossimetria transcutanea che fornisce un valore numerico della saturazione di emoglobina con l’ossigeno (SpO2). In ogni caso, questi indici sono solamente misurazioni indirette dell’ossigenazione tissutale. La valutazione clinica del trattamento riveste la massima importanza.
Per trattamenti a lungo termine, il fabbisogno di ossigeno supplementare deve essere determinato dai valori del gas stesso misurati nel sangue arterioso. Per evitare eccessivi accumuli di anidride carbonica deve essere monitorato l’ossigeno nel sangue, così da regolare l’ossigenoterapia in pazienti con ipercapnia.
Devono essere usati bassi livelli di concentrazione dell’ossigeno nei pazienti con insufficienza respiratoria in cui lo stimolo per la respirazione è rappresentato
Documento reso disponibile da AIFA il 03/05/2019
dall’ipossia (per es. a causa di BPCO). La concentrazione di ossigeno nell’aria inalata non deve superare il 28%; in alcuni pazienti persino il 24% può essere eccessivo.
Se l’ossigeno è miscelato con altri gas, la sua concentrazione nella miscela di gas inalato deve essere mantenuta almeno al 21%. In pratica, si tende a non scendere al di sotto del 30%. Ove necessario, la frazione di ossigeno inalato può essere aumentata fino al 100%.
I neonati possono ricevere il 100% di ossigeno quando necessario. Tuttavia deve essere fatto un attento monitoraggio durante il trattamento. Si raccomanda comunque di evitare una concentrazione di ossigeno eccedente il 40% per ridurre il rischio di danno al cristallino o di collasso polmonare.
La pressione di ossigeno nel sangue arterioso (PaO2) deve essere monitorata, tuttavia se viene mantenuta sotto i 13,3 kPa (100 mmHg) e sono evitate significative variazioni nell’ossigenazione, il rischio di danno oculare è ridotto. Inoltre, il rischio di danno oculare può essere ridotto evitando fluttuazioni notevoli della ossigenazione (vedere anche par. 4.4).
Ossigenoterapia iperbarica
Per ossigenoterapia iperbarica si intende un trattamento con 100% di ossigeno a pressioni di 1.4 volte superiori alla pressione atmosferica a livello del mare (1 atm = 101,3 kPa = 760 mmHg). Per ragioni di sicurezza la pressione nell’ossigenoterapia iperbarica I non dovrebbe superare le 3 atm.
L’ ossigeno deve essere somministrato in camera iperbarica.
La durata delle sedute in una camera iperbarica a una pressione da 2 a 3 atmosfere (vale a dire tra 2,026 e 3,039 bar) è tra 60 minuti e 4–6 ore. Queste sessioni possono essere ripetute da 2 a 4 volte al giorno, in funzione dello stato clinico del paziente.
La compressione e la decompressione dovrebbero essere condotte lentamente in accordo con le procedure adottate comunemente, in modo da evitare il rischio di danno pressorio (barotrauma) a carico delle cavità anatomiche contenenti aria e in comunicazioni con l’esterno.
L’ossigenoterapia iperbarica deve essere effettuata da personale qualificato per questo trattamento.
4.3 controindicazioni
In condizioni normobariche non esistono controindicazioni assolute.
In condizioni iperbariche, il trattamento è controindicato in caso di:
enfisema bolloso asma evolutivo pneumotorace, anamnesi pregressa di pneumotorace bronco pneumopatia cronica ostruttiva (BPCO) polmonite da Pneumocysti carinii stato di male epilettico claustrofobia gravidanza normoevolvente (primo trimestre) per patologie non acute infezioni delle alte vie respiratorie ipertermia sferocitosi ereditaria neurite del nervo ottico tumori maligni acidosi somministrazione concomitante di alcuni farmaci quali doxorubicina, adriamicina, bleomicina, daunorubicina, cis-platino steroidi, disulfiram, e di sostanze quali alcool, idrocarburi aromatici, , nicotina infanti prematuri4.4 avvertenze speciali e precauzioni di impiego
L’ossigeno deve essere somministrato con cautela, con aggiustamenti in funzione delle esigenze del singolo paziente. Deve essere somministrata la dose più bassa che permette di mantenere la pressione a 8 kPa (60 mmHg).
Concentrazioni più elevate devono essere somministrate per il periodo più breve possibile, monitorando frequentemente i valori dell’emogasanalisi.
L’ossigeno può essere somministrato in sicurezza alle seguenti concentrazioni e per i seguenti periodi di tempo:
Fino a 100% meno di 6 ore
60–70% 24 ore
40–50% nel corso del secondo periodo di 24 ore.
L’ossigeno è potenzialmente tossico dopo due giorni a concentrazioni superiori al 40%. Concentrazioni basse di ossigeno devono essere usate per pazienti con insufficienza respiratoria in cui lo stimolo per la respirazione è rappresentato dall’ipossia. In questi casi è necessario monitorare attentamente il trattamento, misurando la tensione arteriosa di ossigeno (PaO2), o tramite pulsometria (saturazione arteriosa di ossigeno – SpO2) e valutazioni cliniche.
La somministrazione di ossigeno a pazienti affetti da insufficienza respiratoria indotta da farmaci (oppioidi, barbiturici) o da bronco-pneumopatie croniche-ostruttive (BPCO) potrebbe aggravare ulteriormente l’insufficienza respiratoria a causa dell’ipercapnia costituita dall’elevata concentrazione nel sangue (plasma) di anidride carbonica, che annulla gli effetti sui recettori.
Le concentrazioni elevate di ossigeno nell’aria o nel gas inalato determinano la caduta della concentrazione e della pressione di azoto. Questo riduce anche la concentrazione di azoto nei tessuti e nei polmoni (alveoli). Se l’ossigeno viene assorbito nel sangue attraverso gli alveoli più velocemente di quanto venga fornito attraverso la ventilazione, gli alveoli possono collassare (atelectasia). Questo può ostacolare l’ossigenazione del sangue arterioso, perché non avvengono scambi gassosi nonostante la perfusione.
Nei pazienti con una ridotta sensibilità alla pressione dell’anidride carbonica nel sangue arterioso, gli elevati livelli di ossigeno possono causare ritenzione di anidride carbonica. In casi estremi, questo può portare a narcosi da anidride carbonica.
Pazienti a rischio di insufficienza respiratoria ipercapnica
Precauzioni particolari devono essere adottate nei pazienti con sensibilità ridotta alla pressione dell’anidride carbonica nel sangue arterioso o a rischio di insufficienza respiratoria ipercapnica (“drive ipossico”) (ad es. pazienti con bronco-pneumopatie croniche ostruttive (BPCO), fibrosi cistica, obesità patologica, deformità della parete toracica, disordini neuromuscolari, sovradosaggio di farmaci depressivi della respirazione). La somministrazione di ossigeno supplementare puo’ causare depressione respiratoria e un aumento di PaCO2 con conseguente acidosi respiratoria sintomatica (vedere paragrafo 4.8). In questi pazienti la terapia con ossigeno deve essere attentamente titolata; il target della saturazione di ossigeno da raggiungere puo’ essere piu’ basso che in altri pazienti e l’ossigeno deve essere somministrato a basse velocità di flusso.
Precauzioni particolari nei pazienti con lesioni polmonari da bleomicina
La tossicità polmonare della terapia con ossigeno ad alto dosaggio puo’ potenziare le lesioni polmonari, anche se somministrata diversi anni dopo la lesione iniziale del polmone causata da bleomicina, e il target di saturazione di ossigeno da raggiungere puo’ essere piu’ basso che in altri pazienti (vedere paragrafo 4.5).
Popolazione pediatrica
Documento reso disponibile da AIFA il 03/05/2019
A causa della maggiore sensibilità del neonato all’ossigeno supplementare, deve essere somministrata la più bassa concentrazione di ossigeno efficace, al fine di ottenere un’adeguata ossigenazione per i neonati.
Nei neonati a termine e nei prematuri, la somministrazione di ossigeno ad una concentrazione superiore al 30–40% genera effetti indesiderati quali retinopatia del prematuro (vedere paragrafo 4.8), malattie polmonari croniche, emorragie intraventricolari. Vi è infatti una insufficiente produzione degli enzimi antiossidanti endogeni, quindi vi è una impossibilità nel contrastare la produzione e gli effetti tossici dei composti reattivi dell’ossigeno. In questi casi deve essere somministrata la più bassa concentrazione di ossigeno efficace e la pressione arteriosa di ossigeno deve essere monitorata da vicino e deve essere mantenuta al di sotto di 13,3 kPa (100 mmHg).
Si raccomanda di iniziare la rianimazione dei neonati nati a termine o vicino al termine con aria anziché con ossigeno al 100%. Nei neonati pretermine, la concentrazione ottimale dell’ossigeno e il target dell’ossigeno non sono precisamente definiti. Se necessario, l’ossigeno supplementare dovrà essere monitorato attentamente e guidato con pulsossimetria.
La somministrazione di ossigeno in camera iperbarica deve essere attentamente valutata in funzione del rapporto rischio/beneficio, in caso di:
otiti e/o sinusiti recidivanti, laringocele, cavità mastoidea, sindrome vestibolare, perdita dell’udito e recente intervento dell’orecchio medio patologie cardiache ischemiche e/o congestizie; nei pazienti con sindrome coronarica acuta o infarto miocardico acuto che richiedono anche terapia iperbarica, come nel caso di intossicazione da CO, la terapia iperbarica deve essere condotta con cautela a causa della potenziale vasocostrizione dell’iperossia nella circolazione coronarica ipertensione arteriosa non trattata farmacologicamente patologie polmonari restrittive e/o restrittive di grado elevato glaucoma, distacco di retina anche se trattato chirurgicamente (manovre di compensazione) storia di convulsioni, epilessia febbre alta non controllata ansia grave, psicosi, claustrofobiaPazienti affetti da diabete mellito
La terapia iperbarica può interferire nel metabolismo del glucosio. Gli effetti vasocostrittori della terapia iperbarica possono inoltre compromettere l’assorbimento sottocutaneo dell’insulina, rendendo il paziente iperglicemico. Può essere considerato di monitorare il glucosio ematico tra una sessione e l’altra di terapia iperbarica.
Disturbi respiratori
A causa della decompressione, alla fine della sessione iperbarica, il volume del gas aumenta mentre la pressione della camera diminuisce, e questo puo’ portare a pneumotorace parziale o aggravamento di un pneumotorace sottostante. In un paziente con uno pneumotorace non drenato, la decompressione potrebbe determinare lo sviluppo di un pneumotorace iperteso.
Inoltre, tenendo conto del rischio di espansione del gas durante la fase di decompressione della terapia iperbarica, il rapporto beneficio/rischio della terapia iperbarica deve essere valutato accuratamente nei pazienti con asma insufficientemente controllato, enfisema polmonare, bronco pneumopatia cronica ostruttiva (BPCO), recente intervento toracico.
SICUREZZA (vedere anche par. 6.6)
Documento reso disponibile da AIFA il 03/05/2019
E’ importante ricordare che l’ossigeno è un comburente e pertanto alimenta la combustione. In presenza di sostanze combustibili quali i grassi (oli, lubrificanti), e le sostanze organiche (tessuti, legno, carta, materie plastiche, ecc.) l’ossigeno può, spontaneamente, per effetto di un innesco (scintilla, fiamma libera, fonte di accensione), oppure per effetto della compressione adiabatica che può accadere nelle apparecchiature di riduzione della pressione (riduttori) durante una riduzione repentina della pressione del gas, attivare una combustione. Di conseguenza, tutte le sostanze con le quali l’ossigeno viene in contatto devono essere classificate come sostanze compatibili con il prodotto nelle normali condizioni di utilizzo.
Qualsiasi sistema o contenitore per l’erogazione dell’ossigeno deve essere tenuto lontano da fonti di calore a causa della comburenza dell’ossigeno: vanno quindi prese le dovute precauzioni in merito, sia in ambiente ospedaliero che domestico, in presenza di ossigeno medicinale. L’ossigeno può provocare l'improvviso incendio di materiali incandescenti o di braci; per questo motivo non è permesso fumare o tenere fiamme accese libere e non schermate in prossimità dei recipienti e dei sistemi di erogazione. Non fumare nell'ambiente in cui si pratica ossigenoterapia. Non disporre bombole o contenitori in prossimità di fonti di calore. Non deve essere utilizzata alcuna attrezzatura elettrica che può emettere scintille nelle vicinanze dei pazienti che ricevono ossigeno. E’ assolutamente vietato intervenire in alcun modo sui raccordi dei contenitori, sulle apparecchiature di erogazione e sui relativi accessori o componenti (OLIO E GRASSI POSSONO PRENDERE SPONTANEAMENTE FUOCO A CONTATTO CON L'OSSIGENO). Deve essere evitato qualsiasi contatto con olio, grasso o altri idrocarburi. E’ assolutamente vietato manipolare le apparecchiature o i componenti con le mani o gli abiti o il viso sporchi di grasso, olio, creme ed unguenti vari. Non usare creme e rossetti grassi. In ambiente sovraossigenato l’ossigeno può saturare gli abiti. E’ assolutamente vietato toccare le parti congelate (per i criocontenitori). Le bombole ed i contenitori criogenici mobili non possono essere usati se vi sono danni evidenti o si sospetta che siano stati danneggiati o siano stati esposti a temperature estreme. Possono essere usate solo apparecchiature adatte e compatibili con l’ossigeno per il modello specifico di recipiente. Non si possono usare pinze o altri utensili per aprire o chiudere la valvola della bombola, al fine di prevenire il rischio di danni. In caso di perdita, la valvola della bombola deve essere chiusa immediatamente, se si può farlo in sicurezza. Se la valvola non può essere chiusa, la bombola deve essere portata in un posto più sicuro all’aperto per permettere all’ossigeno di fuoriuscire liberamente. Le valvole delle bombole vuote devono essere tenute chiuse. L’ossigeno ha un forte effetto ossidante e può reagire violentemente con sostanze organiche. Questo è il motivo per cui la manipolazione e la conservazione dei recipienti richiedono particolari precauzioni. Non è permesso somministrare il gas in pressione.Formulazioni criogeniche
Ustioni da freddo per contatto diretto con l’ossigeno liquido
L’ossigeno diventa liquido approssimativamente a –183°C. A tali basse temperature, il contatto dell’ossigeno liquido con la pelle o con le membrane mucose può causare ustioni da freddo. Devono essere prese particolari precauzioni di sicurezza quando si gestiscono i contenitori criogenici: deve essere indossato il vestiario protettivo appropriato (guanti, occhiali, abbigliamento largo e pantaloni che coprono le scarpe).
Documento reso disponibile da AIFA il 03/05/2019
Se l’ossigeno liquido viene a contatto con la pelle o gli occhi, le aree interessate devono essere lavate con abbondante quantità di acqua fredda, o devono essere applicati impacchi freddi; deve essere richiesta immediatamente assistenza medica.
4.5 interazioni con altri medicinali e altre forme di interazione
L’ossigeno non deve essere somministrato in concomitanza con la somministrazione di farmaci che ne aumentano la tossicità, come catecolamine (ad es. epinefrina, norepinefrina), corticosteroidi (ad es. desametasone, metilprednisolone), ormoni (ad es. testosterone, tiroxina), chemioterapici (bleomicina, ciclofosfammide, 1,3-bis(2-chloroethyl)-1-nitrosourea) ed agenti antimicrobici (ad es. nitrofurantoina).
I raggi X possono aumentare la tossicità dell’ossigeno. Anche l’ipertiroidismo e la carenza di vitamina C, vitamina E o di glutatione possono produrre lo stesso effetto.
La tossicità polmonare associata con farmaci come bleomicina, actinomicina, amiodarone, nitrofurantoina e antibiotici simili può essere accresciuta dall’inalazione concomitante di alte concentrazioni di ossigeno.
Nei pazienti che sono stati trattati per danno polmonare indotto da radicali liberi, la terapia a base di ossigeno può peggiorare il danno, per esempio nel trattamento dell’avvelenamento da paraquat.
L’ossigeno può anche peggiorare la depressione respiratoria indotta dall’alcool.
Farmaci noti per indurre eventi avversi comprendono: adriamicina, menadione, promazina, clorpromazina, tioridazina e clorochina. Gli effetti saranno particolarmente pronunciati nei tessuti con livelli elevati di ossigeno, specialmente i polmoni.
In presenza di ossigeno, l’ossido nitrico viene rapidamente ossidato per formare derivati nitrati superiori che sono irritanti per l’epitelio bronchiale e la membrana alveolo-capillare. Il biossido di azoto (NO2) è il principale composto formato. La velocità di ossidazione è proporzionale alle concentrazioni iniziali di ossido nitrico e di ossigeno nell’aria inalata e alla durata del contatto tra NO e O2.
4.6 gravidanza e allattamento
Gravidanza
Nei test su animali, è stata osservata tossicità riproduttiva dopo la somministrazione di ossigeno ad alte pressioni o ad alte concentrazioni (vedere paragrafo 5.3). Non è nota la rilevanza clinica per l’uomo di tali evidenze.
Ossigenoterapia normobarica
L’ossigeno a pressione atmosferica (pressione inferiore a 0,6 atm) puo’ essere usato durante la gravidanza ma solo quando è necessario, cioè in caso di indicazioni vitali, donne in condizioni critiche o con ipossiemia.
Ossigenoterapia iperbarica
L’utilizzo del trattamento iperbarico è controindicato nella gravidanza normoevolvente (primo trimestre) per patologie non acute.
L’utilizzo della terapia iperbarica in gravidanza potrebbe indurre stress ossidativo da eccesso di ossigeno provocando danni al feto. In casi di grave intossicazione da monossido di carbonio il rapporto beneficio/rischio sembra rassicurare verso l’uso della terapia iperbarica.
Allattamento
Non vi sono controindicazioni per l’uso dell’ossigeno durante l’allattamento.
4.7 effetti sulla capacità di guidare e di usare macchinari ossigenoterapia normobarica
OSSIGENO SIAD non altera o altera in modo trascurabile la capacità di guidare veicoli e di usare macchinari.
Ossigenoterapia iperbarica
Disturbi della vista e dell’udito che possono influenzare la capacità di guidare veicoli e usare macchinari sono stati riportati dopo HBOT (vedere paragrafo 4.8).Poiché un’esposizione prolungata all’ossigeno terapeutico può avere effetti tossici sul sistema nervoso centrale, i pazienti devono evitare di guidare veicoli e usare macchinari fino a quando ogni effetto negativo su attenzione e vigilanza è completamente scomparso.
4.8 effetti indesiderati
I tessuti mostrano differente sensibilità all’iperossiemia, i più sensibili sono i polmoni, il cervello e gli occhi.
Descrizione di reazioni avverse selezionate
Eventi avversi respiratori
A pressione ambientale, i primi segni (tracheobronchite, dolore substernale e tosse secca) compaiono non appena dopo 4 ore di esposizione ad ossigeno 95%. Una ridotta capacità vitale forzata può verificarsi entro 8–12 ore dall’esposizione al 100% di ossigeno, ma le lesioni gravi richiedono esposizioni molto più lunghe. Si può osservare un edema interstiziale dopo 18 ore dall’esposizione al 100% di ossigeno e con possibile evoluzione in fibrosi polmonare. Gli effetti respiratori riportati con ossigenoterapia iperbarica HBOT sono generalmente simili a quelli riscontrati durante il trattamento con ossigeno normobarico, ma il tempo di insorgenza dei sintomi è più breve.
L’inalazione di forti concentrazioni di ossigeno può dare origine a atelettasie causate dalla diminuzione dell’azoto negli alveoli e dall’effetto diretto dell’ossigeno sul surfactante alveolare.
Lo sviluppo delle sezioni atelettasiche dei polmoni porta a un rischio di saturazione arteriosa più povera di ossigeno nel sangue, nonostante una buona perfusione, a causa della mancanza dì scambio di gas nelle sezioni atelettasiche dei polmoni. Il rapporto ventilazione/perfusione peggiora, portando a shunt intrapolmonare.
In pazienti con malattie a lungo termine associate a ipossia cronica e ipercapnía potrebbe verificarsi un cambiamento nelle modalità di controllo della ventilazione. In queste circostanze, la somministrazione di concentrazioni di ossigeno troppo elevate può causare depressione respiratoria dovuta alla soppressione dello stimolo ventilatorio causata dall'effetto del brusco aumento della pressione parziale di ossigeno a livello dei chemorecettori carotidei e aortici, inducendo ipercapnia aggravata, acidosi respiratoria e infine arresto respiratorio (vedere paragrafo 4.4). La somministrazione di ossigeno può causare una lieve riduzione della frequenza e della gittata cardiaca. La somministrazione di ossigeno a pazienti affetti da depressione respiratoria indotta da farmaci (oppioidi, barbiturici) o da BPCO potrebbe deprimere ulteriormente la ventilazione dato che, in queste condizioni, l’ipercapnia non è più in grado di stimolare i chemorecettori centrali mentre l’ipossia è ancora in grado di stimolare i chemorecettori periferici.
Elevati flussi di ossigeno non umidificato possono produrre secchezza e irritazione delle mucose delle vie aeree (congestione o occlusione dei seni paranasali con dolore e perdita ematica) e degli occhi, così come un rallentamento della clearance mucociliare delle secrezioni.
A seguito della somministrazione di concentrazioni di ossigeno superiori all’80%, possono verificarsi lesioni polmonari.
Tossicità a carico del sistema nervoso centrale
Può svilupparsi quando i pazienti respirano ossigeno al 100% a pressioni superiori a 2 bar. Le manifestazioni precoci comprendono visione offuscata, diminuzione della visione periferica, tinnito, disturbi respiratori, contrazioni muscolari localizzate, in particolare degli occhi, della bocca e della fronte. Il prolungamento dell'esposizione può causare vertigini e nausea, seguiti da comportamenti alterati (ansia, confusione, irritabilità), abbassamento del livello di coscienza (fino alla perdita di conoscenza) e convulsioni generalizzate. Si ritiene che le scariche indotte dall'iperossia siano reversibili, non causando alcun danno neurologico residuo e scomparendo al momento della riduzione della pressione parziale dell'ossigeno inspirato.
Eventi avversi correlati all’ossigenoterapia iperbarica (HBOT)
L’ossigenoterapia iperbarica può dare origine a barotrauma da iper-pressione sulle pareti delle cavità chiuse, come l’orecchio interno, con rischio di edema o rottura della membrana timpanica (con dolore ed eventuale emorragia), dei seni paranasali o dei polmoni, con conseguente rischio di pneumotorace, mal di denti, implosione od esplosione dei denti, flatulenza, dolore da colica.
A causa delle dimensioni relativamente ridotte di alcune camere iperbariche, i pazienti possono sviluppare ansia di confinamento che non è dovuta ad un effetto diretto di ossigeno.
Tossicità oculare
E' stata osservata miopia progressiva in casi di trattamenti iperbarici multipli. Il meccanismo rimane non chiarito, ma è stato ipotizzato che dipenda dall'aumento dell'indice di rifrazione del cristallino. La maggior parte dei casi si sono risolti spontaneamente. Tuttavia, il rischio di irreversibilità è aumentato dopo più di 100 terapie. Dopo la conclusione della terapia iperbarica, la remissione della miopia è di solito rapida nelle prime settimane e successivamente più lenta, per periodi che vanno da diverse settimane fino ad un anno.
Non è possibile stimare il numero soglia di sessioni di terapia iperbarica, né la durata.
Popolazione pediatrica
Nei neonati, in particolare quelli prematuri, esposti a forti concentrazioni di ossigeno FiO2 > 40%, PaO2 > di 80mmHg o per periodi prolungati (più di 10 giorni a una FiO2 > 30%), si puo’ verificare rischio di retinopatia di tipo fibroplastico retrolenticolare temporanea o permanente (retinopatia del prematuro, vedere paragrafo 4.4). In tal caso può avvenire il distacco della retina e anche cecità permanente, displasia broncopolmonare, sanguinamento subependimale ed intraventricolare, nonché enterocolite necrotizzante.
La somministrazione di ossigeno modifica la quantità di ossigeno trasportata e ceduta ai vari tessuti. Un aumento della concentrazione locale di ossigeno, principalmente della frazione disciolta, porta ad un aumento della produzione di composti reattivi dell’ossigeno e, di conseguenza, ad un aumento di enzimi antiossidanti o di composti anti-ossidanti endogeni.
Il potenziale danno ossidativo diretto dell’ossigeno è da valutare nella gestione dei prematuri che possono risentire negativamente ed in modo persistente della perossidazione lipidica a carico delle membrane cellulari. In tali soggetti, che non disponendo ancora di un patrimonio di antiossidanti endogeni ad effetto protettivo, la somministrazione di ossigeno può contribuire allo sviluppo di condizioni patologiche persistenti a carico del parenchima polmonare (displasia broncopolmonare; fibrosi polmonare), fino all’insufficienza respiratoria.
Rischio di incendio: il rischio di incendio aumenta in presenza di alte concentrazioni di ossigeno e dí fonti di ignizione che possono provocare ustioni termiche (vedere paragrafo 4.4).
Documento reso disponibile da AIFA il 03/05/2019
Formulazioni criogeniche
Ustioni da freddo si verificano in caso di contatto diretto con ossigeno liquido (vedere paragrafo 4.4).
Nelle tabelle sottostanti sono elencate le reazioni avverse identificate suddivise in base ala classificazione sistemico-organica e alla frequenza. La frequenza viene definita utilizzando i seguenti parametri: Molto comune (≥ 1/10); Comune (≥ 1/100 e <1/10); Non comune (≥1/1000 e <1/100); Raro (≥1/10000 e <1/1000); Molto raro (< 1/10000); e Non nota (la frequenza non può essere definita sulla base dei dati disponibili).
Reazioni avverse associate all’ossigenoterapia normobarica
Molto comune (≥ 1/10)> | Comun e (≥ 1/100, <1/10) > | Non comune (≥1/100 0, <1/100) > | Raro (≥1/100 00, <1/1000 )> | Molto raro (< 1/10000 )> | Non nota (la frequenza non può essere definita sulla base dei dati disponibili) | |
Patologie respiratorie, toraciche e mediastiniche | Tossicità polmonare: -tracheobronchiti (dolore sottosternale, tosse secca) -edema interstiziale -fibrosi polmonare Peggioramento dell’ipercapnia in pazienti con ipossia/ipercapni a cronica trattati con FiO2 eccessivamente elevata: -ipoventilazione -acidosi respiratoria -arresto respiratorio | |||||
Patologie dell’occhio | Retinopat ia del prematur o | |||||
Patologie sistemiche e condizioni relative alla sede di somministrazion e | Secchezza delle mucose Irritazione locale e infiammazione della mucosa |
Reazioni avverse associate all’ossigenoterapia iperbarica
Molto comune (≥ 1/10)> | Comune (≥ 1/100, <1/10)> | Non comune (≥1/1000, <1/100)> | Raro (≥1/100 00, <1/1000 )> | Molto raro (< 1/1000 0)> | Non nota (la frequenza non può essere definita sulla base dei dati disponibili) | |
Patologie respiratorie, toraciche e mediastiniche | Dispnea | Disturbi respiratori | ||||
Patologie del sistema nervoso | Convulsio ni | |||||
Patologie del sistema muscoloscheletr ico e del tessuto connettivo | Spasmi muscolari localizzati | |||||
Patologie dell’orecchio e del labirinto | Dolore all’orecchi o | Perforazion e della membrana timpanica | Vertigini Diminuzione dell’udito Otite media acuta sierosa Tinnito | |||
Patologie gastrointestinali | Nausea | |||||
Disturbi psichiatrici | Comportamen to anormale | |||||
Patologie dell’occhio | Miopia progressiv a | Visione periferica diminuita Visione offuscata Cataratta* | ||||
Traumatismo, avvelenamento e complicazioni da procedura | Barotrau ma (seni paranasal i, orecchio, polmone, denti ecc.) | |||||
Disturbi del metabolismo e della nutrizione | Ipoglicem ia in pazienti diabetici |
* È stato segnalato sviluppo di cataratte in pazienti sottoposti a corsi di trattamenti prolungati e/o sessione di HBOT ripetute di frequente (>150 sessioni). In alcuni casi è stata osservata cataratta nuova/di nuova insorgenza.
Segnalazione di sospette reazioni avverse
La segnalazione delle reazioni avverse sospette che si verificano dopo l'autorizzazione del medicinale è importante. Essa permette un monitoraggio continuo del rapporto beneficio/rischio del medicinale. Agli operatori sanitari è richiesto di segnalare qualsiasi reazione avversa sospetta tramite il sistema nazionale di segnalazione all'indirizzo.
Documento reso disponibile da AIFA il 03/05/2019
4.9 sovradosaggio
L’ossigeno è sempre erogato al 100%, indipendentemente dalla confezione. Le confezioni di ossigeno non costituiscono limiti di dosaggio del gas medicinale, ma solo un tempo di autonomia nell’uso.
Effetti indesiderati dovuti al sovraddosaggio possono avere luogo in pazienti esposti a quantità di ossigeno eccessive per lunghi periodi di tempo o a elevate quantità d’ossigeno in condizioni iperbariche.
Gli effetti tossici dell’ossigeno variano a seconda della pressione dell’ossigeno inalato e della durata dell’esposizione. E’ più probabile che a pressione bassa (da 0,5 a 2,0 bar) esso causi tossicità polmonare piuttosto che tossicità a carico del sistema nervoso centrale. Il contrario vale per le pressioni elevate (terapia a base di ossigeno iperbarico).
I danni al sistema respiratorio da tossicità da ossigeno sono collegati ad una sovraesposizione dell’organismo al gas (iperossia) e ciò può verificarsi a pressione atmosferica se al soggetto viene permesso di respirare ossigeno al 100% per un periodo superiore a 24 ore o, quando la pressione parziale dell’ossigeno viene aumentata e ne deriva una condizione non fisiologica.
I sintomi della tossicità respiratoria comprendono tracheobronchite (dolore substernale, tosse secca), edema interstiziale e fibrosi polmonare, infiammazione alla gola, ipoventilazione, tosse e dolore toracico, dispnea e cianosi, danni ai bronchi ed ai polmoni,
I sintomi di tossicità del sistema nervoso centrale che si osservano con ossigenoterapia iperbarica HBOT includono tinnito, disturbi della vista e dell'udito, spasmi muscolari localizzati in particolare occhi, bocca, fronte. La continuazione dell'esposizione può causare vertigini e nausea, seguiti da comportamenti alterati (ansia, confusione, irritabilità) e infine perdita di coscienza, convulsioni generalizzate.
La tossicità oculare include visione offuscata e visione periferica ridotta nell'ossigenoterapia iperbarica HBOT.
Popolazione pediatrica
Tossicità oculare nei neonati: nei neonati prematuri che sono stati sottoposti a elevate concentrazioni di ossigeno, può verificarsi retinopatia del prematuro.
Pazienti a rischio di insufficienza respiratoria ipercapnica
La somministrazione di ossigeno supplementare può causare depressione respiratoria e un aumento della PaCO2 con conseguente acidosi respiratoria sintomatica.
In caso di intossicazione da ossigeno correlata all’iperossia, l'ossigenoterapia deve essere ridotta o, se possibile, interrotta e deve essere iniziato un trattamento sintomatico.
Inoltre, deve essere fornita terapia che mantenga le normali funzioni fisiologiche del paziente (quale un supporto per la respirazione in caso di depressione respiratoria).
Nella maggior parte dei pazienti la sintomatologia si risolve dopo 4 ore di cessazione dall’esposizione.
5 PROPRIETA' FARMACOLOGICHE
Categoria farmaco-terapeutica: gas medicinali; Codice ATC: V03AN01
5.1 proprietà farmacodinamiche
L’ossigeno costituisce approssimativamente il 21% dell’aria. L’ossigeno è trasportato attraverso le vie respiratorie ai polmoni mediante l’aria inspirata. Negli alveoli avviene lo scambio di gas per differenza di pressione parziale tra l’aria/gas inspirati e il sangue dei capillari. L’ossigeno viene trasportato principalmente legato all’emoglobina attraverso la circolazione sistemica ai capillari dei tessuti dove a sua volta si diffonde
Documento reso disponibile da AIFA il 03/05/2019
alle varie cellule grazie ad un gradiente pressorio. La destinazione finale dell’ossigeno è il mitocondrio di ogni cellula dove viene consumato in una catena di reazioni enzimatiche che generano energia.
L’aumento della frazione di ossigeno nell’aria inspirata (miscela di gas inspirata), aumenta il gradiente di pressione parziale che trasporta ossigeno alle cellule.
L’ossigeno è indispensabile alla vita e deve essere continuamente fornito a tutti i tessuti per poter garantire la produzione di energia cellulare. È coinvolto nel metabolismo e nel catabolismo cellulare e permette la produzione d’energia sotto forma di adenosina trifosfato (ATP) e pertanto, in condizioni normobariche, una riduzione del flusso ematico, un aumento della distanza fra capillare e cellula (edema infiammatorio o da stasi), lesioni fisico-chimiche o qualsiasi alterazione del trasporto o della diffusione dell’ossigeno, provocano sofferenza o morte cellulare.
La variazione della pressione parziale d’ossigeno nel sangue colpisce il sistema cardiovascolare, il sistema respiratorio, il metabolismo cellulare e il sistema nervoso centrale. La privazione d’ossigeno, che provoca l’ipossia tissutale, ha come conseguenza un rapido deterioramento dell’attività miocardica e dell’attività centrale nervosa. È fondamentale intervenire mediante terapia con ossigeno affinché i tessuti vengano adeguatamente ossigenati.
L’Ossigeno terapia iperbarica (OTI) utilizza la somministrazione di ossigeno al 100% in camere iperbariche in cui la pressione atmosferica è maggiore ad 1 ATA.
La respirazione di ossigeno a una pressione superiore a 1 atmosfera ha lo scopo di aumentare in maniera rilevante la quantità di ossigeno disciolto nel sangue arterioso che rifornisce direttamente le cellule. Per la nota legge di Henry, infatti, nella camera iperbarica si ottiene un aumento della frazione di ossigeno disciolta nel plasma e di conseguenza una sua diffusione più rapida ed in maggior quantità nei liquidi extra ed intracellulari supplendo così ad una insufficienza circolatoria meccanica e metabolica. La Pa 02 di un paziente che respiri aria ambiente a pressione atmosferica normale (1 ATA) è circa 100 mm Hg e può raggiungere al massimo 670 mm Hg in respirazione con ossigeno puro, migliorando la saturazione dell’emoglobina ma variando di poco la quantità di ossigeno disciolta nel plasma.
La respirazione di ossigeno al 100% in ambiente a pressione superiore a quella atmosferica determinerà aumento dell’ossigeno disciolto, che è la frazione più rapidamente utilizzabile dalle cellule, oltre naturalmente ad una completa saturazione della emoglobina.
La pressione terapeutica abitualmente scelta va da 2 a 3 ATA; al di sopra di questa pressione la dissoluzione dell’ossigeno nei liquidi è talmente ridotta che è inutile e dannoso superare questi valori.
Trattamenti intermittenti di ossigenoterapia iperbarica agevolano il trasporto di ossigeno anche nei tessuti edematosi o con scarsa perfusione, in modo da mantenere la normale funzionalità cellulare e la produzione di energia.
La variazione di pressione esercitata sui pazienti sottoposti a ossigenoterapia iperbarica riduce proporzionalmente, secondo la legge di Boyle, le dimensioni delle bolle di gas presenti nei tessuti.
L’ ossigenoterapia iperbarica inibisce la crescita di organismi anaerobi.
L’ossigenoterapia topica migliora la disponibilità dell’ossigeno sulla superficie delle lesioni e inibisce la proliferazione degli organismi anaerobi.
5.2 proprietà farmacocinetiche
L’ossigeno somministrato per inalazione viene assorbito mediante lo scambio alveolocapillare (circa 250 ml/min).
Durante l’inalazione di aria normale, il sangue arterioso lascia i polmoni saturato circa al 95% con ossigeno, e in un soggetto a riposo, il sangue venoso ritorna ai polmoni saturato dal 60 al 70%. In un minuto vengono utilizzati circa 360 cc di ossigeno. Dopo ispirazione forzata profonda la capacità polmonare è di circa 5–5,5 litri, dei quali 1 litro è di ossigeno.
Documento reso disponibile da AIFA il 03/05/2019
L’ossigeno assunto per via inalatoria diffonde attraverso le membrane degli alveoli nel torrente circolatorio con un meccanismo di scambio dipendente dalla pressione. Il grado di assorbimento è proporzionale all’area della superficie della membrana alveolare, alla concentrazione locale dell’ossigeno e al tasso di ventilazione (frequenza e volume) del paziente.
Il sangue arterioso trasporta ossigeno in due forme. La maggior parte si lega normalmente all’emoglobina (ossiemoglobina), mentre una piccola quantità è libera in soluzione. La quantità di soluzione trasportata dipende dalla pressione parziale dell’ossigeno. Quando pienamente saturato con O2, ogni grammo di emoglobina lega l’1,3 di volume % di ossigeno. A 37 °C, lo 0.003% di O2 è disciolto nel sangue.
La quantità di ossigeno disciolta nel sangue aumenta di circa 5 volte quando si respira, in condizioni normobariche, ossigeno al 100%, anziché aria normale (21% di ossigeno). In condizioni iperbariche (oltre 3 Bar) la quantità di ossigeno disciolta aumenta ulteriormente.
Una porzione dell’ossigeno disciolto durante il trasporto diffonde nei tessuti periferici e si lega parzialmente ai citocromi e alla mioglobina.
I globuli rossi trasportano ossigeno legato ai tessuti attraverso il sistema circolatorio. Nei tessuti in cui la pressione parziale di ossigeno è inferiore a quella del sangue, l’ossigeno diffonde al di fuori dei globuli rossi, attraverso i capillari e il plasma, e all’interno delle cellule.
La maggior parte dell’ossigeno si combina con atomi di carbonio e idrogeno provenienti da molecole di glucosio per formare energia cellulare, conosciuta come adenosintrifosfato o ATP, anidride carbonica (CO2) ed acqua. Il rimanente ossigeno si combina con diversi substrati per sintetizzare le strutture cellulari o prodotti di eliminazione. L’anidride carbonica generata nelle cellule diffonde ai globuli rossi e ritorna ai polmoni, dove viene esalata. L’acqua metabolica si combina con l’acqua non digerita e l’eccesso viene eliminato per escrezione attraverso il rene o per evaporazione attraverso i polmoni e la cute.
L’ossigeno viene completamente metabolizzato. L’anidride carbonica è il principale metabolita; essa viene prodotta in tutte le cellule nel corso del processo aerobico di produzione dell’ATP nei mitocondri e trasportata dall’emoglobina nuovamente ai polmoni, dove si dissocia e diffonde al di fuori degli eritrociti nel plasma e, attraverso le membrane alveolari, nell’aria alveolare. L’anidride carbonica in forma disciolta reagisce con l’acqua, e dopo deprotonazione forma bicarbonato. Questa reazione, altamente reversibile, permette all’anidride carbonica di diffondere nell’aria alveolare. Un supplemento di ossigeno aumenta il numero di legami tra ossigeno ed emoglobina nel torrente circolatorio arterioso polmonare; questo limita la capacità di trasporto disponibile per l’anidride carbonica e ne limita l’escrezione. Il tasso di escrezione del principale metabolita dell’ossigeno è proporzionale al tasso di assorbimento e di distribuzione dell’ossigeno stesso.
Gli altri metaboliti sono i “composti reattivi dell’ossigeno” (Reactive Oxygen Species, ROS), parzialmente convertibili tra loro e inattivati per conversione enzimatica. La formazione dei ROS è connessa alla frazione di ossigeno disciolta.
Durante il metabolismo dell’ossigeno, sono generate diverse sostanze tossiche, che includono l’anione superossido (O2-), il perossido di idrogeno (H2O2), il radicale idrossilico (OH-), il perossido lipidico, e altre. Il radicale superossido gioca un ruolo significativo in un numero di stati fisiopatologici che includono la tossicità da ossigeno, danni da radiazioni, infiammazione mediata dai fagociti e danno post-ischemico. Senza la disponibilità di diversi enzimi che distruggono queste sostanze intermediarie tossiche, la morte cellulare si verifica prontamente.
Gli enzimi protettivi includono la superossido dismutasi (SODs), la catalasi (CAT), e la glutatione perossidasi (GP). La glutatione reduttasi (GR) partecipa riformando il glutatione. Altri contributi al controllo della tossicità ossidativa derivano dalla vitamina C (acido ascorbico), dalla vitamina E (α-tocoferolo), dalla vitamina A, e dal selenio, un cofattore per la GP.
Documento reso disponibile da AIFA il 03/05/2019
L’ossigeno è ridotto attraverso processi enzimatici e non, nel radicale superossido (O2-); questo radicale si forma in vivo negli animali attraverso l’attività di alcuni enzimi e flavoproteine.
L’ossigeno favorisce il rilascio del monossido di carbonio (CO) legato alla emoglobina e ad altre proteine contenenti ferro, quindi ostacola gli effetti negativi causati dal legame di CO al ferro.
L’ossigenoterapia iperbarica accelera il rilascio di CO ad una velocità maggiore rispetto a quella raggiungibile dalla respirazione del 100% di ossigeno a pressioni normali.
L’ossigeno somministrato localmente aumenta la disponibilità di ossigeno negli strati superficiali della lesione.
5.3 dati preclinici di sicurezza
La prolungata esposizione a iperossia normobarica è associata ad attivazione dei leucociti e ritenzione di questi nel polmone. Tuttavia non è stato ancora chiarito se ciò possa danneggiare altri organi. Lo sviluppo di tossicità polmonare in ratti neonati è stato associato con cambiamenti significativi nella conta leucocitaria e in alterazioni istologiche nel fegato e nell’ileo. Si presume quindi che l’attivazione dei leucociti circolanti e/o l’effetto diretto dell’iperossia normobarica possa danneggiare vari organi indipendentemente dalla patologia polmonare indotta da iperossia normobarica. La respirazione di ossigeno a 1 atmosfera o a livelli più alti può provocare una modesta e reversibile depressione respiratoria, come conseguenza della perdita dell’attività chemorecettoriale tonica.
La somministrazione di supplementi di ossigeno nell’uomo e negli animali da laboratorio porta a una riduzione della frequenza e, di conseguenza, della gittata cardiaca, e a una diminuzione della pressione arteriosa polmonare per effetto del rilassamento del tono vascolare legato alla ridotta ipossia alveolare regionale.
La somministrazione di ossigeno supplementare produce una maggior quantità di specie reattive che, quando la capacità degli antiossidanti enzimatici o la quantità di antiossidanti endogeni è limitata, possono interagire con residui aminoacidici di proteine, legami insaturi dei lipidi, carboidrati e DNA.
L’iperossia può indurre danno acuto a livello polmonare, portando a necrosi delle cellule endoteliali e successiva proliferazione delle cellule polmonari di tipo II. Un aumento cronico nella quantità di ossigeno somministrato può portare a induzione degli enzimi antiossidanti, pertanto le possibilità di provocare danno ossidativo si riducono quando la somministrazione sia cronica. L’eccesso di esposizione a O2 in condizioni iperbariche può determinare attivazione delle citochine infiammatorie polmonari.
L’esposizione delle vie aeree ad ossigeno per periodi prolungati provoca l’esposizione dell’epitelio polmonare a ossidanti di generazione endogena ed esogena. I danni funzionali da esposizione prolungata a O2 al 100% sono comunque limitati e lo sviluppo di ROS può essere in qualche misura antagonizzato dall’aumentata produzione di antiossidanti endogeni.
Sono state esaminate le caratteristiche dell’mRNA estratto da polmoni di topi esposti a dosi elevate di ossigeno (maggiori del 95%) per tre giorni consecutivi: si dimostra un aumento dell’espressione dei geni per il fattore di necrosi tumorale (TNF), interleukina-1 e interleukina-6, a confronto con mRNA estratto da polmoni di topi esposti all’aria ambiente.
Conigli adulti esposti ad un’atmosfera di ossigeno al 100% per 48 ore, manifestano inoltre, a livello delle cellule visive mature, un effetto tossico dell’iperossia, che ha come conseguenza perdita dell’elettroretinogramma (ERG) e morte delle cellule stesse.
Studi effettuati su pecore, hanno indicato che, dopo 96 h di ore di esposizione all’O2 al 100% la compliance dinamica risulta significativamente ridotta, senza concomitante aumento della reattività delle vie aeree.
Documento reso disponibile da AIFA il 03/05/2019
Numerosissimi studi condotti in vari modelli sperimentali hanno nel complesso confermato il danno da ossigeno iperbarico sul DNA cellulare. La ripetuta esposizione ad ossigeno iperbarico può aumentare il rischio di mutagenesi definito con saggi standard.
Non esistono dati di cancerogenicità dell’ossigeno.
Lo stress ossidativo e le specie relative dell’ossigeno possano alterare lo sviluppo embrionale sia in senso positivo che negativo. Le risposte sono legate sia alla produzione di ROS che a fenomeni di vasocostrizione che possono portare a vasobliterazione e neovascolarizzazione nella retina.
L’esposizione all’ossigeno sia a pressione normale che in OTI può, a seguito della formazione di ROS, determinare tossicità riproduttiva, in particolare embriotossicità e anche tossicità nel neonato, oltre che tossicità spermatica.
L’esposizione acuta di cani al 100% di O2 a pressione atmosferica ha determinato avvelenamento dopo 36 ore, sofferenza/angoscia entro 48 ore e morte entro 60 ore. Un’esposizione al 90% di O2 richiede il doppio del tempo per ottenere simili risultati. L’esposizione all’80% non causa morte ma gli animali mostrano segni patologici dopo l’esposizione continua per una settimana. La diminuzione della saturazione di O2 nel sangue, l’aumento dell’emoglobina, congestione polmonare ed edema, scompenso della parte destra del cuore e congestione epatica sono conseguenze frequenti in caso di avvelenamento da ossigeno.
Inoltre, studi condotti su ratte gravide e neonati, hanno evidenziato che una bassa concentrazione di ossigeno può favorire un’ischemia, ed indurre la produzione di forme attive dell’ossigeno quali anioni superossidi e perossidasi lipidiche che determinerebbero serie conseguenze in vari organi. Si ipotizza che la bassa concentrazione di ossigeno può aver causato la perossidazione dei lipidi nel feto a causa di una maggior richiesta di ossigeno durante il periodo gestazionale.
6 informazioni farmaceutiche
6.1 elenco degli eccipienti
Non applicabile.
6.2 incompatibilità
L’ossigeno è un comburente e pertanto alimenta la combustione. In presenza di sostanze combustibili quali i grassi (oli, lubrificanti), e le sostanze organiche (tessuti, legno, carta, materie plastiche, ecc.) l’ossigeno, può, spontaneamente, attivare una combustione per effetto di un innesco (scintilla, fiamma libera, fonte di accensione), oppure per effetto della compressione adiabatica che può accadere nelle apparecchiature di riduzione della pressione (riduttori) durante una riduzione repentina della pressione del gas) attivare una combustione. Di conseguenza, tutte le sostanze con le quali l’ossigeno viene in contatto devono essere classificate come sostanze compatibili con il prodotto nelle normali condizioni di utilizzo.
6.3 periodo di validità
Bombole di ossigeno compresso: 2 anni
Contenitori mobili di ossigeno criogenico: 1 mese
Contenitori fissi di ossigeno criogenico: 3 mesi
6.4 Precauzioni per la conservazione
Osservare tutte le regole pertinenti all’uso e alla movimentazione delle bombole sotto pressione e dei recipienti contenenti liquidi criogenici.
Conservare le bombole e i recipienti criogenici mobili a temperature comprese tra –10°C e 50°C, in ambienti ben ventilati, oppure in rimesse ben ventilate, evitando la formazione di atmosfere sovraossigenate (O2> 21% vol.), in posizione verticale con le valvole chiuse e protetti da pioggia e intemperie, dall’esposizione alla luce solare
Documento reso disponibile da AIFA il 03/05/2019 diretta e lontani da fonti di calore o d’ignizione e da materiali combustibili. I recipienti vuoti o che contengono altri tipi di gas devono essere conservati separatamente.
I contenitori criogenici fissi, installati presso le strutture sanitarie, devono essere collocati all’aperto secondo quanto specificato dalla Circolare 99/1964, in zone confinate e protette, con accessi limitati agli addetti, gestiti e mantenuti secondo le indicazioni fornite da ciascun Fabbricante. Si tratta di apparecchiature a pressione e quindi soggette alla Direttiva CE PED e/o al Decreto Ministeriale del 21/11/1972.
6.5 natura e contenuto del contenitore
OSSIGENO SIAD gas medicinale compresso è confezionato in bombole e pacchi bombola, allo stato di gas compresso a 200 bar a 15°C. Le bombole sono in acciaio o in lega di alluminio, provviste di valvole in grado di collegarsi ad un riduttore di pressione o di valvole riduttrici con riduttore di pressione integrato.
OSSIGENO SIAD gas medicinale criogenico è confezionato in contenitori criogenici mobili (unità base) o fissi.
6.6 Istruzioni per l’impiego e la manipolazione
Le bombole di ossigeno medicinale, come anche i contenitori criogenici fissi e mobili, sono riservati esclusivamente a contenere/trasportare ossigeno per inalazione, ad uso terapeutico.
Le bombole e i contenitori criogenici mobili (Unità Base) devono essere trasportati utilizzando mezzi appropriati per proteggerli dai rischi di urti e di caduta.
Rispettare imperativamente le seguenti istruzioni:
Leggere attentamente il manuale d’istruzione ed uso del contenitore (confezione). Verificare che tutto il materiale sia in buono stato. Fissare le bombole e le unità base per mantenerle in posizione verticale ed evitare cadute intempestive, proteggerle dagli urti e mantenerle a temperatura inferiore ai 50°C, assicurando un’adeguata ventilazione/aerazione dei locali dove viene utilizzato il prodotto. Le bombole devono essere munite di cappellotto/tulipano a protezione della valvola. Manipolare il materiale con le mani pulite, prive di tracce di grasso o olio. Sollevare e movimentare le bombole e le unità base utilizzando esclusivamente l’apposito carrello, non sollevare la bombola prendendola dalla valvola. Utilizzare raccordi, tubi di collegamento o flessibili di raccordo specifici e compatibili con l’ossigeno. Si deve assolutamente prestare particolare attenzione anche al fissaggio di riduttori di pressione sulle bombole, qualora non già integrati nel sistema di chiusura del contenitore, onde evitare i rischi di rotture accidentali. E’ assolutamente vietato intervenire in alcun modo sui raccordi dei contenitori, sulle apparecchiature di erogazione ed i relativi accessori o componenti (OLIO E GRASSI POSSONO PRENDERE SPONTANEAMENTE FUOCO A CONTATTO CON L'OSSIGENO). Non ingrassare, né tentare di riparare valvole/rubinetti difettosi. E’ assolutamente vietato manipolare le apparecchiature o i componenti con le mani o gli abiti o il viso sporchi di grasso olio creme ed unguenti vari. E’ assolutamente vietato toccare le parti congelate (per i criocontenitori).Istruzioni generali per l’uso
Bombole munite di sola valvola di intercettazione
1. Togliere il cappellotto di protezione qualora presente
2. Assicurarsi che la valvola di erogazione sia chiusa
3. Togliere il sigillo di inviolabilità
4. Collegare il riduttore alla valvola della bombola ed il relativo flussometro
Documento reso disponibile da AIFA il 03/05/2019
5. Collegare l’umidificatore/gorgogliatore
6. Collegare la cannula provvista di maschera od occhialini all’umidificatore
7. Aprire lentamente la valvola generale fino a completa apertura
8. Regolare il flussometro ai valori di portata richiesti (litri/minuto)
Bombole munite di valvola riduttrice integrata
1. Assicurarsi che la valvola sia chiusa
2. Togliere il sigillo di inviolabilità
3. Assicurarsi che l’indicatore di flusso sia posizionato sullo zero
4. Collegare l’umidificatore/gorgogliatore
5. Collegare la cannula provvista di maschera od occhialini all’umidificatore
6. Aprire lentamente la valvola generale fino a completa apertura
7. Regolare il flussometro ai valori di portata richiesti (litri/minuto)
Contenitori criogenici mobili
1. Assicurarsi che l’indicatore di flusso sia posizionato sullo zero
2. Togliere il sigillo di inviolabilità
3. Collegare l’umidificatore /gorgogliatore
4. Collegare la cannula provvista di maschera od occhialini all’umidificatore
5. Posizionare il regolatore di flusso ai valori di portata richiesti (litri/minuto)
NOTA: PER MAGGIORI DETTAGLI CONSULTARE IL MANUALE D’USO DEL CONTENITORE.
ATTENZIONE
Aprire gradualmente i sistemi di chiusura dei contenitori (la valvola o il rubinetto) per evitare colpi di pressione, Non forzare rubinetti e valvole durante l’apertura e chiusura, Non posizionarsi mai di fronte alla bocca di uscita del gas dal rubinetto/valvola, ma sempre sul lato opposto. Non esporsi né esporre il paziente al flusso diretto del gas. Non usare olio o grasso a contatto con il gas. Non svuotare completamente il recipiente. Dopo l’uso chiudere la valvola della bombola. In caso di perdita di gas, chiudere la valvola e avvertire il servizio di intervento tecnico del fornitore indicato sul Manuale d’uso del contenitore. Utilizzare solo contenitori adatti per il prodotto, alle previste pressione e temperatura di impiego.Durante l’utilizzo
Non usare creme e rossetti grassi. Non fumare. Non avvicinarsi alla confezione con fiamme libere. non deve essere utilizzata alcuna attrezzatura elettrica che può emettere scintille nelle vicinanze dei pazienti che ricevono ossigeno. Non utilizzare oli o grassi su raccordi, rubinetti, valvola e su qualsiasi materiale a contatto con l’ossigeno. Non introdurre mai l’ossigeno in un apparecchio che potrebbe contenere dei materiali combustibili e in particolare delle materie grasse.Smaltimento
Conservare le bombole vuote con le valvole chiuse. Non scaricare in fogne, scantinati o scavi dove l’accumulo può essere pericoloso. Riconsegnare i contenitori vuoti o non più utilizzati, anche se solo parzialmente vuoti al fornitore. Eventuali residui di prodotto medicinale non utilizzato presenti nella bombola a pressione saranno eliminati, tramite apposite procedure, in zona benDocumento reso disponibile da AIFA il 03/05/2019 ventilata dalla società che provvederà al successivo riempimento dello stesso contenitore.
Il medicinale non utilizzato ed i rifiuti derivati da tale medicinale devono essere smaltiti in conformità alla normativa locale vigente.